Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.655
Filtrar
1.
Schizophr Bull ; 50(1): 177-186, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606284

RESUMO

BACKGROUND AND HYPOTHESIS: Individuals at familial risk for developing schizophrenia (FRSZ) or bipolar disorder (FRBD) have shared and unique genetic risks. Few studies have compared neural activation between these two groups. Therefore, the present meta-analysis investigated functional brain similarities and differences between FRSZ and FRBD individuals. STUDY DESIGN: A systematic literature review was conducted of articles that compared FRSZ or FRBD individuals to healthy controls (31 FRSZ and 22 FRBD). Seed-based d mapping was used to conduct the meta-analysis. Analyses included comparisons of FRSZ to controls, FRBD to controls, and both relative groups to each other. STUDY RESULTS: Using a highly conservative family-wise error rate correction, there were no significant findings. Using a less conservative threshold, FRSZ compared to controls had lower activation in the left precuneus (Puncorrected = .02) across all studies and in the left middle frontal gyrus (Puncorrected = .03) in nonsocial cognition studies. FRBD compared to controls had lower activation in the left superior parietal gyrus (Puncorrected = .03) and right angular gyrus (Puncorrected = .03) in nonsocial cognition studies, and higher activation in the left superior frontal gyrus (Puncorrected = .01) in social tasks. Differences between FRSZ and FRBD were not significant. CONCLUSIONS: There were few robust differences between FRSZ or FRBD compared to controls. This suggests only weak support for neural activation differences between individuals at genetic risk for schizophrenia or bipolar disorder and controls. The tentative findings observed were in different brain regions for FRSZ and FRBD, with no strong evidence for shared effects between schizophrenia and bipolar genetic risk on neural activation.


Assuntos
Transtorno Bipolar , Esquizofrenia , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/genética , Transtorno Bipolar/patologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Esquizofrenia/patologia , Encéfalo , Imageamento por Ressonância Magnética/métodos , Predisposição Genética para Doença
2.
Psychol Med ; 54(2): 278-288, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37212052

RESUMO

BACKGROUND: Individuals with bipolar disorder are commonly correctly diagnosed a decade after symptom onset. Machine learning techniques may aid in early recognition and reduce the disease burden. As both individuals at risk and those with a manifest disease display structural brain markers, structural magnetic resonance imaging may provide relevant classification features. METHODS: Following a pre-registered protocol, we trained linear support vector machine (SVM) to classify individuals according to their estimated risk for bipolar disorder using regional cortical thickness of help-seeking individuals from seven study sites (N = 276). We estimated the risk using three state-of-the-art assessment instruments (BPSS-P, BARS, EPIbipolar). RESULTS: For BPSS-P, SVM achieved a fair performance of Cohen's κ of 0.235 (95% CI 0.11-0.361) and a balanced accuracy of 63.1% (95% CI 55.9-70.3) in the 10-fold cross-validation. In the leave-one-site-out cross-validation, the model performed with a Cohen's κ of 0.128 (95% CI -0.069 to 0.325) and a balanced accuracy of 56.2% (95% CI 44.6-67.8). BARS and EPIbipolar could not be predicted. In post hoc analyses, regional surface area, subcortical volumes as well as hyperparameter optimization did not improve the performance. CONCLUSIONS: Individuals at risk for bipolar disorder, as assessed by BPSS-P, display brain structural alterations that can be detected using machine learning. The achieved performance is comparable to previous studies which attempted to classify patients with manifest disease and healthy controls. Unlike previous studies of bipolar risk, our multicenter design permitted a leave-one-site-out cross-validation. Whole-brain cortical thickness seems to be superior to other structural brain features.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina , Reconhecimento Psicológico , Máquina de Vetores de Suporte
3.
Psychiatry Clin Neurosci ; 77(11): 613-621, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37585287

RESUMO

AIM: Elevated inflammation and larger choroid plexus (ChP) volume has been previously identified in mood disorders. Connections between inflammation, ChP, and clinical symptoms in bipolar II depression (BDII-D) are unclear. Data-driven clustering based on neuroanatomical phenotypes may help to elucidate neurobiological associations in BDII-D. METHODS: Inflammatory cytokines, clinical symptoms, and neuroanatomical features were assessed in 150 BDII-D patients. Sixty-eight cortical surface area (SA) and 19 subcortical volumes were extracted using FreeSurfer. The ChP volume was segmented manually using 3D Slicer. Regularized canonical correlation analysis was used to identify significantly correlated components between cortical SA and subcortical volumes (excluding the ChP), followed by k-means clustering to define brain-derived subgroups of BDII-D. Low-grade inflammation was derived by averaging the standardized z scores of interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α (TNF-α), which were computed to create a composite z-value score. Partial Pearson correlations followed by multiple comparison correction were conducted to explore associations between inflammation, clinical symptoms, and ChP volume. RESULTS: Subgroup I demonstrated smaller subcortical volume and cortical SA, higher inflammation, and larger ChP volume compared with subgroup II. Greater ChP volume was associated with a higher low-grade inflammation (mean r = 0.289, q = 0.003), CRP (mean r = 0.249, q = 0.007), IL-6 (left r = 0.200, q = 0.03), and TNF-α (right r = 0.226, q = 0.01), while greater IL-1ß was significantly associated with severe depressive symptoms in BDII-D (r = 0.218, q = 0.045). CONCLUSIONS: Neuroanatomically-derived subgroups of BDII-D differed in their inflammation levels and ChP volume. These findings suggest an important role of elevated peripheral inflammation and larger ChP in BDII-D.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Depressão , Plexo Corióideo/diagnóstico por imagem , Plexo Corióideo/patologia , Fator de Necrose Tumoral alfa , Encéfalo/patologia , Inflamação/patologia
4.
J Affect Disord ; 339: 984-997, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481130

RESUMO

BACKGROUND: Pediatric bipolar disorder (PBD) is a severe disorder characterized by mood fluctuations starting at a young age. Several neuroimaging studies revealed a specific biological signature of PBD involving alterations in the amygdala and prefrontal regions. Considering the growing concerns regarding the effects of PBD treatments on developing brains, this review aims to provide an overview of the studies investigating the effect of mood stabilizers, antipsychotics, and anticonvulsants on neuroimaging findings in PBD. METHODS: We searched PubMed, Scopus, and Web of Science to identify all structural magnetic resonance imaging (sMRI), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) studies exploring the effects of medications on neuroimaging findings in PBD. A total of 18 studies met our inclusion criteria (fMRI n = 11, sMRI n = 6, DTI n = 1). RESULTS: Although the findings varied highly across the studies, some investigations consistently indicated that medications primarily affect the prefrontal cortex and the amygdala. Moreover, despite some exceptions, the reported medication effects predominantly lean towards structural and functional normalization. LIMITATIONS: The reviewed studies differ in methods, medications, and fMRI paradigms. Furthermore, most studies used observational approaches with small sample sizes, minimizing the statistical power. CONCLUSIONS: Evidence suggests the potential of antipsychotics and mood stabilizers to modulate the neuroimaging findings in PBD patients, mostly normalizing brain structure and function in key mood-regulating regions.


Assuntos
Antipsicóticos , Transtorno Bipolar , Humanos , Criança , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/patologia , Imagem de Tensor de Difusão , Antipsicóticos/uso terapêutico , Antipsicóticos/farmacologia , Encéfalo/patologia , Imageamento por Ressonância Magnética , Antimaníacos/uso terapêutico , Antimaníacos/farmacologia , Anticonvulsivantes/efeitos adversos , Neuroimagem
5.
J Affect Disord ; 338: 312-320, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301295

RESUMO

OBJECTIVES: To characterize the neuroanatomy of BD in youth and its correlation to clinical characteristics. METHODS: The current study includes a sample of 105 unmedicated youth with first-episode BD, aged between 10.1 and 17.9 years, and 61 healthy comparison adolescents, aged between 10.1 and 17.7 years, who were matched for age, race, sex, socioeconomic status, intelligence quotient (IQ), and education level. T1-weighted magnetic resonance imaging (MRI) images were obtained using a 4 T MRI scanner. Freesurfer (V6.0) was used to preprocess and parcellate the structural data, and 68 cortical and 12 subcortical regions were considered for statistical comparisons. The relationship between morphological deficits and clinical and demographic characteristics were evaluated using linear models. RESULTS: Compared with healthy youth, youth with BD had decreased cortical thickness in frontal, parietal, and anterior cingulate regions. These youth also showed decreased gray matter volumes in 6 of the 12 subcortical regions examined including thalamus, putamen, amygdala and caudate. In further subgroup analyses, we found that youth with BD with comorbid attention-deficit hyperactivity disorder (ADHD) or with psychotic symptoms had more significant deficits in subcortical gray matter volume. LIMITATIONS: We cannot provide information about the course of structural changes and impact of treatment and illness progression. CONCLUSIONS: Our findings indicate that youth with BD have significant neurostructural deficits in both cortical and subcortical regions mainly located in the regions related to emotion processing and regulation. Variability in clinical characteristics and comorbidities may contribute to the severity of anatomic alterations in this disorder.


Assuntos
Transtorno Bipolar , Humanos , Adolescente , Criança , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/patologia , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia
6.
J Affect Disord ; 337: 75-85, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236273

RESUMO

BACKGROUND: Cognitive impairment affects many patients with bipolar disorder (BD). No pro-cognitive treatment with robust efficacy exists partly due to limited insight into underlying neurobiological abnormalities. METHODS: This magnetic resonance imaging (MRI) study investigates structural neuronal correlates of cognitive impairment in BD by comparing brain measures in a large sample of cognitively impaired versus cognitively intact patients with BD or cognitively impaired patients with major depressive disorder (MDD) and healthy controls (HC). Participants underwent neuropsychological assessments and MRI scans. The cognitively impaired and - intact BD and MDD patient groups were compared with each other and HC regarding prefrontal cortex measures, hippocampus shape/volume, and total cerebral white (WM) and grey matter (GM). RESULTS: Cognitively impaired BD patients showed lower total cerebral WM volume than HC, which scaled with poorer global cognitive performance and more childhood trauma. Cognitively impaired BD patients also showed lower adjusted GM volume and thickness in the frontopolar cortex than HC but greater adjusted GM volume in the temporal cortex than cognitively normal BD patients. Cognitively impaired BD patients showed decreased cingulate volume than cognitively impaired MDD patients. Hippocampal measures were similar across all groups. LIMITATIONS: The cross-sectional study design prevented insights into causal relationships. CONCLUSIONS: Lower total cerebral WM and regional frontopolar and temporal GM abnormalities may constitute structural neuronal correlates of cognitive impairment in BD, of which the WM deficits scale with the degree of childhood trauma. The results deepen the understanding of cognitive impairment in BD and provide a neuronal target for pro-cognitive treatment development.


Assuntos
Experiências Adversas da Infância , Transtorno Bipolar , Disfunção Cognitiva , Transtorno Depressivo Maior , Humanos , Transtorno Bipolar/complicações , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Transtorno Depressivo Maior/patologia , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos
7.
Biol Psychiatry ; 94(7): 580-590, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37031780

RESUMO

BACKGROUND: Individuals with bipolar disorder (BD) and schizophrenia (SCZ) show aberrant brain dynamics (i.e., altered recruitment or traversal through different brain states over time). Existing investigations of brain dynamics typically assume that one dominant brain state characterizes each time point. However, as multiple brain states likely are engaged at any given moment, this approach can obscure alterations in less prominent but critical brain states. Here, we examined brain dynamics in BD and SCZ by implementing a novel framework that simultaneously assessed the engagement of multiple brain states. METHODS: Four recurring brain states were identified by applying nonlinear manifold learning and k-means clustering to the Human Connectome Project task-based functional magnetic resonance imaging data. We then assessed moment-to-moment state engagement in 2 independent samples of healthy control participants and patients with BD or SCZ using resting-state (N = 336) or task-based (N = 217) functional magnetic resonance imaging data. Relative state engagement and state engagement variability were extracted and compared across groups using multivariate analysis of covariance, controlling for site, medication, age, and sex. RESULTS: Our framework identified dynamic alterations in BD and SCZ, while a state discretization approach revealed no significant group differences. Participants with BD or SCZ showed reduced state engagement variability, but not relative state engagement, across multiple brain states during resting-state and task-based functional magnetic resonance imaging. We found decreased state engagement variability in older participants and preliminary evidence suggesting an association with avolition. CONCLUSIONS: Assessing multiple brain states simultaneously can reflect the complexity of aberrant brain dynamics in BD and SCZ, providing a more comprehensive understanding of the neural mechanisms underpinning these conditions.


Assuntos
Transtorno Bipolar , Conectoma , Esquizofrenia , Humanos , Idoso , Transtorno Bipolar/patologia , Encéfalo , Aprendizagem , Imageamento por Ressonância Magnética
8.
Asian J Psychiatr ; 82: 103513, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36827938

RESUMO

Our study aimed to examine the shared and distinct structural brain alterations, including cortical thickness(CT) and local gyrification index(LGI), and cognitive impairments between the early course stage of drug-naïve schizophrenia(SZ) and bipolar disorder(BD) patients when compared to healthy controls(HCs), and to further explore the correlation between altered brain structure and cognitive impairments. We included 72 SZ patients, 35 BD patients and 43 HCs. The cognitive function was assessed using the MATRICS Consensus Cognitive Battery. Cerebral cortex analyses were performed with FreeSurfer. Furthermore, any structural aberrations related to cognition impairments were examined. Cognitive impairments existed in SZ and BD patients and were much more severe and widespread in SZ patients, compared to HCs. There were no significant differences in LGI among three groups. Compared to HCs, SZ had thicker cortex in left pars triangularis, and BD showed thinner CT in left postcentral gyrus. In addition, BD showed thinner cortex in left pars triangularis, left pars opercularis, left insula and right fusiform gyrus compared to SZ. Moreover, our results indicated that CT in many brain areas were significantly correlated with cognitive function in HCs, but only CT of left pars triangularis was correlated with impaired social cognition found in SZ. The findings suggest that changes of CT in the left pars triangularis and left postcentral gyrus may be potential pathophysiological mechanisms of the cognition impairments in SZ and BD, respectively, and the divergent CT of partly brain areas in BD vs. SZ may help distinguish them in early phases.


Assuntos
Transtorno Bipolar , Espessura Cortical do Cérebro , Encéfalo , Transtornos Cognitivos , Cognição , Esquizofrenia , Psicologia do Esquizofrênico , Esquizofrenia/complicações , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Transtorno Bipolar/complicações , Transtorno Bipolar/patologia , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/psicologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Transtornos Cognitivos/complicações , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Afinamento Cortical Cerebral , Humanos , Masculino , Feminino , Adulto Jovem , Estudos de Casos e Controles , Correlação de Dados
9.
J Neural Transm (Vienna) ; 130(2): 145-152, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36680695

RESUMO

Accumulated evidence has demonstrated abnormal amygdala activation in bipolar disorder (BD). The olfactory bulb (OB) has vigorous connections with the amygdala. Although odor-related functions of the OB decreased during the evolutionary process, we hypothesized that an evolved OB with increased activation in emotion regulation may be one of the main factors affecting amygdala functions in BD. Our aim was to investigate metabolism in the OB and amygdala in patients with BD. Twenty-six patients diagnosed with BD according to DSM-5 diagnostic criteria were included in this cross-sectional study. Metabolism in the OB and amygdala was assessed using fluorodeoxyglucose positron emission tomography/CT in patients with BD. The OB and amygdala metabolism was compared with the patients' Z scores. Both OB and amygdala metabolic activities were significantly higher than in the controls. A positive correlation was detected between right/left amygdala metabolism and right OB metabolism (p < 0.05, r:467 and r:662, respectively). This study increased our understanding of the etiopathogenesis of BD. In BD, the main cause of hypermetabolism in the amygdala may be increased metabolism in the OB. During evolution, the OB may have assumed a dominant role in emotional processing rather than olfactory functions.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Bulbo Olfatório/diagnóstico por imagem , Bulbo Olfatório/patologia , Estudos Transversais , Tonsila do Cerebelo/patologia , Emoções/fisiologia , Imageamento por Ressonância Magnética
10.
Hum Brain Mapp ; 44(2): 523-534, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36111883

RESUMO

Deficits in neural processing of reward have been described in both bipolar disorder (BD) and schizophrenia (SZ), but it remains unclear to what extent these deficits are caused by similar mechanisms. Efficient reward processing relies on adaptive coding which allows representing large input spans by limited neuronal encoding ranges. Deficits in adaptive coding of reward have previously been observed across the SZ spectrum and correlated with total symptom severity. In the present work, we sought to establish whether adaptive coding is similarly affected in patients with BD. Twenty-five patients with BD, 27 patients with SZ and 25 healthy controls performed a variant of the Monetary Incentive Delay task during functional magnetic resonance imaging in two reward range conditions. Adaptive coding was impaired in the posterior part of the right caudate in BD and SZ (trend level). In contrast, BD did not show impaired adaptive coding in the anterior caudate and right precentral gyrus/insula, where SZ showed deficits compared to healthy controls. BD patients show adaptive coding deficits that are similar to those observed in SZ in the right posterior caudate. Adaptive coding in BD appeared more preserved as compared to SZ participants especially in the more anterior part of the right caudate and to a lesser extent also in the right precentral gyrus. Thus, dysfunctional adaptive coding could constitute a fundamental deficit in severe mental illnesses that extends beyond the SZ spectrum.


Assuntos
Transtorno Bipolar , Esquizofrenia , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Imageamento por Ressonância Magnética , Motivação , Recompensa
11.
Curr Top Behav Neurosci ; 61: 35-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35505055

RESUMO

While there is an abundance of epidemiological evidence implicating infectious agents in the etiology of severe mental illnesses, postmortem studies have not yet detected an increased incidence of microbial nucleic acid or proteins in the brains of people with mental illness. Nevertheless, abnormally expressed immune and inflammatory markers have consistently been found in the postmortem brain of patients with schizophrenia and mood disorders. Some of these abnormalities may be the result of an infection in utero or early in life that not only impacted the developing immune system but also the developing neurons of the brain. Some of the immune markers that are consistently found to be upregulated in schizophrenia implicate a possible viral infection and the blood brain barrier in the etiology and neuropathology of the disorder.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtornos Mentais , Humanos , Transtorno Bipolar/patologia , Encéfalo/metabolismo , Transtorno Depressivo Maior/metabolismo , Inflamação/metabolismo
12.
Psychol Med ; 53(10): 4707-4719, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35796024

RESUMO

BACKGROUND: While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS: Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS: Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS: We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Substância Branca , Adulto , Masculino , Humanos , Feminino , Adolescente , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/patologia , Encéfalo/patologia
13.
Psychol Med ; 53(13): 6102-6112, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36285542

RESUMO

BACKGROUND: Inflammation plays a crucial role in the pathogenesis of major depressive disorder (MDD) and bipolar disorder (BD). This study aimed to examine whether the dysregulation of complement components contributes to brain structural defects in patients with mood disorders. METHODS: A total of 52 BD patients, 35 MDD patients, and 53 controls were recruited. The human complement immunology assay was used to measure the levels of complement factors. Whole brain-based analysis was performed to investigate differences in gray matter volume (GMV) and cortical thickness (CT) among the BD, MDD, and control groups, and relationships were explored between neuroanatomical differences and levels of complement components. RESULTS: GMV in the medial orbital frontal cortex (mOFC) and middle cingulum was lower in both patient groups than in controls, while the CT of the left precentral gyrus and left superior frontal gyrus were affected differently in the two disorders. Concentrations of C1q, C4, factor B, factor H, and properdin were higher in both patient groups than in controls, while concentrations of C3, C4 and factor H were significantly higher in BD than in MDD. Concentrations of C1q, factor H, and properdin showed a significant negative correlation with GMV in the mOFC at the voxel-wise level. CONCLUSIONS: BD and MDD are associated with shared and different alterations in levels of complement factors and structural impairment in the brain. Structural defects in mOFC may be associated with elevated levels of certain complement factors, providing insight into the shared neuro-inflammatory pathogenesis of mood disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Córtex Motor , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Fator H do Complemento , Properdina , Complemento C1q , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-36427550

RESUMO

BACKGROUND: Despite reports of altered brain morphology in established bipolar disorder (BD), there is limited understanding of when these morphological abnormalities emerge. Assessment of patients during the early course of illness can help to address this gap, but few studies have examined surface-based brain morphology in patients at this illness stage. METHODS: We completed a secondary analysis of baseline data from a randomised control trial of BD individuals stabilised after their first episode of mania (FEM). The magnetic resonance imaging scans of n = 35 FEM patients and n = 29 age-matched healthy controls were analysed. Group differences in cortical thickness, surface area and gyrification were assessed at each vertex of the cortical surface using general linear models. Significant results were identified at p < 0.05 using cluster-wise correction. RESULTS: The FEM group did not differ from healthy controls with regards to cortical thickness or gyrification. However, there were two clusters of increased surface area in the left hemisphere of FEM patients, with peak coordinates falling within the lateral occipital cortex and pars triangularis. CONCLUSIONS: Cortical thickness and gyrification appear to be intact in the aftermath of a first manic episode, whilst cortical surface area in the inferior/middle prefrontal and occipitoparietal cortex is increased compared to age-matched controls. It is possible that increased surface area in the FEM group is the outcome of abnormalities in a premorbidly occurring process. In contrast, the findings raise the hypothesis that cortical thickness reductions seen in past studies of individuals with more established BD may be more attributable to post-onset factors.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Mania/patologia , Córtex Pré-Frontal/patologia , Imageamento por Ressonância Magnética/métodos , Lobo Occipital , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia
15.
Neuromolecular Med ; 25(1): 125-135, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36436129

RESUMO

Lithium is a mood stabilizer broadly used to prevent and treat symptoms of mania and depression in people with bipolar disorder (BD). Little is known, however, about its mode of action. Here, we analyzed the impact of lithium on synaptic vesicle (SV) cycling at presynaptic terminals releasing glutamate, a neurotransmitter previously implicated in BD and other neuropsychiatric conditions. We used the pHluorin-based synaptic tracer vGpH and a fully automated image processing pipeline to quantify the effect of lithium on both SV exocytosis and endocytosis in hippocampal neurons. We found that lithium selectively reduces SV exocytic rates during electrical stimulation, and markedly slows down SV recycling post-stimulation. Analysis of single-bouton responses revealed the existence of functionally distinct excitatory synapses with varying sensitivity to lithium-some terminals show responses similar to untreated cells, while others are markedly impaired in their ability to recycle SVs. While the cause of this heterogeneity is unclear, these data indicate that lithium interacts with the SV machinery and influences glutamate release in a large fraction of excitatory synapses. Together, our findings show that lithium down modulates SV cycling, an effect consistent with clinical reports indicating hyperactivation of glutamate neurotransmission in BD.


Assuntos
Ácido Glutâmico , Compostos de Lítio , Sinapses , Vesículas Sinápticas , Compostos de Lítio/farmacologia , Ácido Glutâmico/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Transtorno Bipolar/metabolismo , Transtorno Bipolar/patologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Hipocampo/patologia , Exocitose/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Animais , Ratos , Células Cultivadas
16.
Dis Model Mech ; 15(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239094

RESUMO

Cellular migration is a ubiquitous feature that brings brain cells into appropriate spatial relationships over time; and it helps in the formation of a functional brain. We studied the migration patterns of induced pluripotent stem cell-derived neural precursor cells (NPCs) from individuals with familial bipolar disorder (BD) in comparison with healthy controls. The BD patients also had morphological brain abnormalities evident on magnetic resonance imaging. Time-lapse analysis of migrating cells was performed, through which we were able to identify several parameters that were abnormal in cellular migration, including the speed and directionality of NPCs. We also performed transcriptomic analysis to probe the mechanisms behind the aberrant cellular phenotype identified. Our analysis showed the downregulation of a network of genes, centering on EGF/ERBB proteins. The present findings indicate that collective, systemic dysregulation may produce the aberrant cellular phenotype, which could contribute to the functional and structural changes in the brain reported for bipolar disorder. This article has an associated First Person interview with the first author of the paper.


Assuntos
Transtorno Bipolar , Células-Tronco Neurais , Transtorno Bipolar/genética , Transtorno Bipolar/patologia , Encéfalo/patologia , Fator de Crescimento Epidérmico , Humanos , Imageamento por Ressonância Magnética , Células-Tronco Neurais/patologia
17.
Neurosci Biobehav Rev ; 143: 104922, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272579

RESUMO

Major Depressive Disorder (MDD) and Bipolar Disorder Depression (BDD) are common psychiatric illnesses characterized by structural and functional brain alterations and signs of neuroinflammation. In line with the neuroinflammatory pathogenesis of depressive syndromes, recent studies have demonstrated how white matter (WM) microstructural impairments detected by Diffusion Tensor Imaging, are correlated to peripheral immunomarkers in depressed patients. In this context, we performed a comprehensive systematic search on PubMed, Medline and Scopus of the original studies published till June 2022, exploring the association between immunomarkers and WM alteration patterns in patients affected by MDD or BDD. Overall, the studies included in this review showed a consistent association between blood proinflammatory and counter-regulatory immunomarkers, including regulatory T cells and natural killer cells markers, as well as measures of demyelination and dysmyelination in both MDD and BDD patients. These pathogenetic insights could outline an integrated clinical perspective to affective disorders, helping psychiatrists to develop novel biotype-to-phenotype models of depression and opening the way to tailored approaches in treatments.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Substância Branca , Humanos , Transtorno Bipolar/patologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Imagem de Tensor de Difusão/métodos , Inflamação/patologia , Substância Branca/patologia
18.
J Psychiatr Res ; 155: 410-419, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183596

RESUMO

BACKGROUND: Attention deficit hyperactivity disorder (ADHD) and bipolar disorder type I (BD-Ι) share great overlapping symptoms and are highly comorbid. We aimed to compare and obtain the common and distinct gray matter volume (GMV) patterns in adult patients. METHOD: We searched four databases to include whole-brain voxel-based morphometry studies and compared the GMV patterns between ADHD and healthy controls (HCs), between BD-I and HCs, and between ADHD and BD-I using anisotropic effect-size signed differential mapping software. RESULTS: We included 677 ADHD and 452 BD-Ι patients. Compared with HCs, ADHD patients showed smaller GMV in the anterior cingulate cortex (ACC) and supramarginal gyrus but a larger caudate nucleus. Compared with HCs, BD-Ι patients showed smaller GMV in the orbitofrontal cortex, parahippocampal gyrus, and amygdala. No common GMV alterations were found, whereas ADHD showed the smaller ACC and larger amygdala relative to BD-Ι. Subgroup analyses revealed the larger insula in manic patients, which was positively associated with the Young Mania Rating Scale. The decreased median cingulate cortex (MCC) was positively associated with the ages in ADHD, whereas the MCC was negatively associated with the ages in BD-Ι. LIMITATIONS: All included data were cross-sectional; Potential effects of medication and disease course were not analyzed due to the limited data. CONCLUSIONS: ADHD showed altered GMV in the frontal-striatal frontal-parietal circuits, and BD-Ι showed altered GMV in the prefrontal-amygdala circuit. These findings could contribute to a better understanding of the neuropathology of the two disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno Bipolar , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética
19.
ACS Chem Neurosci ; 13(19): 2784-2802, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36125113

RESUMO

Psychiatric disorders are one of the leading causes of disability worldwide and affect the quality of life of both individuals and the society. The current understanding of these disorders points toward receptor dysfunction and neurotransmitter imbalances in the brain. Treatment protocols are hence oriented toward normalizing these imbalances and ameliorating the symptoms. However, recent literature has indicated the possible role of depleted levels of antioxidants like glutathione (GSH) as well as an alteration in the levels of the pro-oxidant, iron in the pathogenesis of major psychiatric diseases, viz., schizophrenia (Sz), bipolar disorder (BD), and major depressive disorder (MDD). This review aims to highlight the involvement of oxidative stress (OS) in these psychiatric disorders. An overview of the clinical features, neurotransmitter abnormalities, and pharmacological treatments concerning these psychiatric disorders has also been presented. Furthermore, it attempts to synthesize literature from existing magnetic resonance spectroscopy (MRS) and quantitative susceptibility mapping (QSM) studies for these disorders, assessing GSH and iron, respectively. This manuscript is a sincere attempt to stimulate research discussion to advance the knowledge base for further understanding of the pathoetiology of Sz, BD, and MDD.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Antioxidantes/metabolismo , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/patologia , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/patologia , Glutationa/metabolismo , Humanos , Ferro , Neurotransmissores , Estresse Oxidativo , Qualidade de Vida , Espécies Reativas de Oxigênio , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia
20.
Transl Psychiatry ; 12(1): 335, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977925

RESUMO

This study examined the structural brain differences across individuals of different BD stages and the risks of developing bipolar disorder (BD) associated with these brain differences. A total of 221 participants who were recruited from the Guangzhou Brain Hospital and the community were categorized into four groups: NC (healthy control) (N = 77), high risk (HR) (N = 42), ultra-high risk (UHR) (N = 38), and bipolar disorder (BD) (N = 64) based on a list of criteria. Their demographics, clinical characteristics, and diffusion magnetic resonance imaging (dMRI) data were collected. ANCOVA results showed that the HR group had significantly reduced mean diffusivity (MD) (p = 0.043) and radial diffusivity (RD) (p = 0.039) of the left portico-ponto-cerebellar tracts when compared with the BD group. Moreover, logistic regression results showed that the specific diffusivity measures of cerebellar tracts (e.g., cortico-ponto-cerebellar tract), particularly the RD and MD revealed differences between groups at different BD stages after controlling for the covariates. The findings suggested that specific diffusivity (RD and MD) of cerebellar tracts (e.g., cortico-ponto-cerebellar tract) revealed differences between groups at different BD stages which is helpful in detecting the trajectory changes in BD syndromes in the early stages of BD, particularly when the BD syndromes start from HR stage.


Assuntos
Transtorno Bipolar , Cerebelo , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/patologia , Cerebelo/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...